Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)
TIMES(x, y) → HELP(x, y, 0)
HELP(x, y, c) → LT(c, y)
HELP(x, y, c) → IF(lt(c, y), x, y, c)
IF(true, x, y, c) → HELP(x, y, s(c))
PLUS(x, s(y)) → PLUS(x, y)
IF(true, x, y, c) → PLUS(x, help(x, y, s(c)))
PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)
TIMES(x, y) → HELP(x, y, 0)
HELP(x, y, c) → LT(c, y)
HELP(x, y, c) → IF(lt(c, y), x, y, c)
IF(true, x, y, c) → HELP(x, y, s(c))
PLUS(x, s(y)) → PLUS(x, y)
IF(true, x, y, c) → PLUS(x, help(x, y, s(c)))
PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(x, s(y)) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(x, s(y)) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)

R is empty.
The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(x, s(y)) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

HELP(x, y, c) → IF(lt(c, y), x, y, c)
IF(true, x, y, c) → HELP(x, y, s(c))

The TRS R consists of the following rules:

times(x, y) → help(x, y, 0)
help(x, y, c) → if(lt(c, y), x, y, c)
if(true, x, y, c) → plus(x, help(x, y, s(c)))
if(false, x, y, c) → 0
lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))

The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

HELP(x, y, c) → IF(lt(c, y), x, y, c)
IF(true, x, y, c) → HELP(x, y, s(c))

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)

The set Q consists of the following terms:

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

times(x0, x1)
help(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

HELP(x, y, c) → IF(lt(c, y), x, y, c)
IF(true, x, y, c) → HELP(x, y, s(c))

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair HELP(x, y, c) → IF(lt(c, y), x, y, c) the following chains were created:




For Pair IF(true, x, y, c) → HELP(x, y, s(c)) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(0) = 0   
POL(HELP(x1, x2, x3)) = -1 + x1 + x2 - x3   
POL(IF(x1, x2, x3, x4)) = -1 - x1 + x2 + x3 - x4   
POL(c) = -2   
POL(false) = 0   
POL(lt(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following pairs are in P>:

IF(true, x, y, c) → HELP(x, y, s(c))
The following pairs are in Pbound:

IF(true, x, y, c) → HELP(x, y, s(c))
The following rules are usable:

falselt(s(x), 0)
lt(x, y) → lt(s(x), s(y))
truelt(0, s(x))


↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ NonInfProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

HELP(x, y, c) → IF(lt(c, y), x, y, c)

The TRS R consists of the following rules:

lt(0, s(x)) → true
lt(s(x), 0) → false
lt(s(x), s(y)) → lt(x, y)

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.